
VLS: Steering Pretrained Robot Policies via
Vision–Language Models

Shuo Liu1,4, Ishneet Sukhvinder Singh2, Yiqing Xu3,4, Jiafei Duan1,4,∗, Ranjay Krishna1,4,∗
1University of Washington 2University of Oxford

3National University of Singapore 4Allen Institute for Artificial Intelligence
∗Co-advising

vision-language-steering.github.io

Fig. 1. We present Vision–Language Steering (VLS), a training-free framework for inference-time steering of frozen generative robot policies. Our core
idea is to leverage the open-world understanding capabilities of VLMs to generate reward functions for partially denoised action proposals, helping the base
policy successfully operate in out-of-distribution (OOD) scenarios such as object changes, scene changes or instruction changes by correcting the denoising
path. VLS demonstrates excellent performance in simulation benchmarks as well as real-world experiments, proving its effectiveness.

Abstract—Why do pretrained diffusion or flow-matching poli-
cies fail when the same task is performed near an obstacle, on a
shifted support surface, or amid mild clutter? Such failures rarely
reflect missing motor skills; instead, they expose a limitation of
imitation learning under train–test shifts, where action generation
is tightly coupled to training-specific spatial configurations and
task specifications. Retraining or fine-tuning to address these
failures is costly and conceptually misaligned, as the required
behaviors already exist but cannot be selectively adapted at test
time. We propose Vision–Language Steering (VLS), a training-
free framework for inference-time adaptation of frozen generative
robot policies. VLS treats adaptation as an inference-time control
problem, steering the sampling process of a pretrained diffusion
or flow-matching policy in response to out-of-distribution ob-
servation–language inputs without modifying policy parameters.
By leveraging vision–language models to synthesize trajectory-
differentiable reward functions, VLS guides denoising toward
action trajectories that satisfy test-time spatial and task re-
quirements. Across simulation and real-world evaluations, VLS
consistently outperforms prior steering methods, achieving a 31%
improvement on CALVIN and a 13% gain on LIBERO-PRO.
Real-world deployment on a Franka robot further demonstrates
robust inference-time adaptation under test-time spatial and
semantic shifts.

I. INTRODUCTION

Once a child learns to place a cup at the center of a
table, they have not merely mastered a single task. The same
motor skill generalizes to placing the cup near an edge, atop
a stack of books, or inside a crowded cabinet. For humans,
motor execution naturally transfers across such spatial and
task variations [18, 19]. For robots, however, skill execution
is often tightly coupled to the specific spatial configurations
and instructions encountered during training. As a result, even
state-of-the-art manipulation policies [26, 38, 48, 9, 2, 5, 6,
41, 15, 1, 25] can fail when the observation or instruction at
test time deviates from the training distribution: a robot that
succeeds at placing an object at the center of a table may
hesitate, collide, or miss entirely when asked to place it near
an edge. These failures do not reflect missing motor capability,
but rather the absence of a mechanism to adapt existing skills
to new spatial requirements at test time.

Recent advances in robot learning have produced expressive
pretrained policies, particularly those based on diffusion or
flow-matching objectives, that achieve strong in-distribution
performance [3, 33, 7]. However, these generative policies

ar
X

iv
:2

60
2.

03
97

3v
1 

 [
cs

.R
O

] 
 3

 F
eb

 2
02

6

https://vision-language-steering.github.io/webpage/
https://arxiv.org/abs/2602.03973v1


remain brittle under out-of-distribution (OOD) observation–
language inputs [40], where the required motor behaviors are
already present in the training data but must be executed under
altered spatial structure. Addressing such failures through
retraining or fine-tuning is costly and conceptually misaligned,
as it attempts to relearn behaviors rather than control their
execution [53, 55, 47]. Expanding the training distribution to
cover all possible spatial variations is therefore a brute-force
solution to what is fundamentally an inference-time control
problem.

In this work, we propose Vision–Language Steering
(VLS), a training-free framework for inference-time adaptation
of pretrained robotic policies. VLS operates on a frozen base
policy and addresses OOD inputs—joint observation–language
pairs (o, l)OOD that lie outside the expert dataset—by steering
the policy’s sampling process at test time. Rather than modi-
fying policy parameters, VLS reshapes the action distribution
during inference so that generated trajectories satisfy the spa-
tial and task structure implied by (o, l)OOD. This formulation
explicitly decouples skill execution from OOD task specifi-
cation: the base policy provides reusable motor primitives,
while inference-time steering controls how those primitives
are composed and instantiated under OOD inputs.

Our approach is inspired by inference-time steering tech-
niques developed for large language models and image gen-
eration models [11, 13, 20, 36, 27, 46], where a pretrained
model’s output distribution is reshaped to elicit desired behav-
iors without additional training. VLS extends this paradigm
to robotics by treating action generation as a controllable
denoising process. Specifically, we leverage vision–language
models (VLMs) to interpret OOD observation–language in-
puts, decompose tasks into execution stages, and synthesize
differentiable reward functions that score action proposals
with respect to spatial structure. These rewards provide dense,
trajectory-level gradients that guide diffusion or flow-matching
policies during inference. By grounding OOD inputs into
geometric representations and injecting reward-based guidance
into the denoising process, VLS enables existing skills to
be executed reliably under spatial variation and unseen task
specifications, while preserving the robustness of the frozen
base policy.

We evaluate VLS in both simulation and real-world set-
tings under observation and language shifts at test time. In
simulation, we benchmark on CALVIN [35] and LIBERO-
PRO [54], two widely used manipulation suites that ex-
plicitly stress inference-time adaptation to out-of-distribution
observation–language inputs. On CALVIN, VLS consistently
outperforms prior inference-time steering methods such as
ITPS [49] and DynaGuide [16], achieving up to a 31%
absolute improvement in success rate on long-horizon tasks.
On LIBERO-PRO, VLS improves the success rate of frozen
VLA policies, including OpenVLA [28], π0 [3], variants of
π0.5 [4, 31] by up to 13% under both spatial (object layout)
and semantic (task specification) perturbations. Finally, real-
world experiments on a Franka robot demonstrate that VLS
enables stable execution of multi-stage, language-specified

tasks under unseen object appearances, positional changes, and
target substitutions, validating its effectiveness for practical
deployment.

II. RELATED WORK

A. Imitation-Trained Policies under Small Environment Shifts

Large-scale imitation learning has enabled impressive gener-
alist and VLM-conditioned robot policies, including diffusion-
and flow-matching generators [2, 26, 38, 48]. However, a
consistent failure mode remains: even mild changes in scene
geometry or context (e.g., clutter, support-surface shifts, dif-
ferent object layouts) can cause sharp degradation. This brit-
tleness is a known limitation of imitation learning: policies
learn correlations between action and training context, and
thus do not reliably produce constraint-satisfying behaviors
when the environment configuration departs from the training
manifold. This motivates methods that adapt execution at test
time without assuming new data coverage.

B. VLM-based Scene Understanding with Re-optimization

A common way is to use VLMs to generate scene rep-
resentations that improves spatial understanding and then
re-optimize actions online via planning, search, or iterative
refinement [22, 23, 30]. While these approaches can handle
unseen observations, they typically require rollouts, repeated
evaluation, or online optimization loops, which are computa-
tionally heavy and often incompatible with real-time control.
Moreover, they shift the burden of generalization to optimiza-
tion at deployment, whereas our goal is to retain the pretrained
policy as the skill prior and adapt behavior through lightweight
inference-time control.

C. Inference-time Steering of Generative Policies

Most related to our approach are inference-time methods
that steer the sampling of a pre-trained policy.

Value/critic-guided steering. V-GPS re-ranks actions using
an offline-learned value function to improve generalist policies
without updating the backbone [37]. For diffusion policies,
VGD injects gradients from a learned value/Q model into de-
noising to bias trajectories toward higher value while keeping
the policy frozen [52]. These methods provide dense guidance,
but they do so through an auxiliary learned objective, which
can effectively reshape the policy toward the critic’s prefer-
ences. However, we view this as undesirable as the base policy
should remain the invariant, and only the test-time constraints
should modulate execution.

Dynamics/world-model guided steering. DynaGuide uses
an external dynamics model to guide denoising, en-
abling multi-objective steering while preserving the diffusion
prior [16]. Latent Policy Barrier uses a learned dynamics
model to predict and optimize future latent states so tra-
jectories remain within an expert manifold under covariate
shift [45]. These approaches increase dependence on predictive
modeling and rollout-style evaluation, and can become sensi-
tive to model error and inference cost as it pushes adaptation
burden into heavier test-time optimization.



Human/VLM-in-the-loop steering and verification. ITPS
steers generative sampling through human interaction signals
at inference time [49]. FOREWARN uses VLMs as open-
vocabulary verifiers to select among candidate plans [51],
and Do What You Say similarly checks reasoning–action
faithfulness by filtering candidate action sequences using
VLM-based alignment [50]. These methods demonstrate the
power of semantic feedback, but their supervision is typically
discrete and sparse, which forces adaptation to occur through
selection/rejection over candidates rather than through contin-
uous, differentiable steering within generation, making them
sample-inefficient when the desired behavior requires fine-
grained constraint satisfaction. The work most closely related
to VLS is VLA-Pilot [32], but our focus is on guiding pre-
trained policies to handle OOD scenarios, combining gradient-
guided denoising processes with dynamic stage transitions, and
conducting extensive testing in both simulation and real-world.

Online improvement without finetuning the base policy.
Policy Decorator adds a residual refinement policy for online
correction while preserving the backbone imitation policy [53].
USR unifies latent steering with residual refinement via a
lightweight actor for online improvement of diffusion poli-
cies [55]. DSRL optimizes in diffusion latent/noise space to
enable fast online improvement with black-box access to the
base policy [47]. These methods rely on online learning or in-
teraction, whereas we focus on pure inference-time adaptation
with no additional training at deployment.

III. PROBLEM FORMULATION

A. The OOD Dilemma in Imitation Learning

Imitation learning aims to learn a policy πθ from an expert
demonstration dataset Dexpert = {(oi,ai), li}Ni=1, modeling
the state-conditional action distribution p(a|o). Typically, at
environment time step t, the training target of a policy πθ is to
maximize the likelihood of an action chunk at:t+T with chunk
horizon T , conditioned on the observation o (typically RGB
images and robot proprioception) and language instruction l :

max
θ

E(a,o,l)∼Dexpert

[
T∑

t=1

log πθ(at:t+T |ot, l)

]
. (1)

After training, the policy πθ’s weight θ can be frozen, which
we refer to as the base policy π⋆. However, this training
objective is inherently static and distribution-dependent. When
the policy is deployed in real world, it inevitably encounters
out-of-distribution (OOD) scenarios {o, l}OOD /∈ Dexpert,
which ranging from observation shift (oOOD) such as change
of visual backgrounds or object layouts to semantic ambiguity
(lOOD) such as unseen instructions. Since the base policy π⋆

tends to overfit on the spatial and semantic correlations present
in the training manifold, it exhibits severe brittleness when
faced with such OOD scenarios [42].

B. Diffusion and Flow Matching Policies

In recent years, denoising generative models have become
a cornerstone for imitation learning [9]. These models learn

to transform a simple Gaussian distribution into a complex
target action distribution q(a0t:t+T ) through forward diffusion
and reverse denoising [21]. The forward process gradually
adds Gaussian noise to the clean action trajectory a0t:t+T ,
transforming it into a Gaussian distribution aKt:t+T ∼ N (0, I).
A network ϵ(ak, o, l, k) is then trained to predicted the added
noise at denoising step k ∈ [0, 1, ...,K], conditioned on the
observation o and instruction l. The reverse process samples
action from aKt:t+T ∼ N (0, I) and applies the update

ak−1
t:t+T =

1
√
αk

(
akt:t+T − 1− αk√

1− ᾱk
ϵ(akt:t+T , o, l, k)

)
+ σkz,

(2)
where z ∼ N (0, I), αk and ᾱk are noise schedule coefficients,
eventually producing a0t:t+T that approximates q(a0t:t+T ).

Beyond denoising diffusion, flow matching simplifies the
denoising process by learning a continuous velocity field v.
While flow-matching also iteratively refines samples from a
Gaussian distribution, different from discrete indices {K,K−
1, . . . , 0} that often used in diffusion models, flow matching
utilizes a continuous time interval [0, 1], where k = 1 and
k = 0 correspond to the noise distribution and the clean action
trajectory, respectively. Since both variables fundamentally
represent the progression of the denoising process, we unify
the notation by using k for both frameworks to avoid redundant
symbolic definitions and potential ambiguity. Flow matching
models the transition of distribution as an Ordinary Differential
Equation (ODE):

dakt:t+T

dt
= v(akt:t+T , o, l, k). (3)

C. Problem Formulation

Given a pre-trained base policy π⋆, our goal is to enable it
to adapt to OOD scenarios {o, l}OOD /∈ Dexpert at inference
time without fine-tuning. To enable π⋆ adapt to the new
condition (o, l)OOD, we leverage Classifier Guidance [13] to
steer the sampling process of the base policy. The core idea
is to find a guidance function and use the gradient g =
∇ak

t:t+T
log p((o, l)OOD|akt:t+T ) which represent the score of

joint distribution of action proposal akt:t+T and OOD condition
(o, l)OOD, to guide the direction of denoising. We provide a
detailed derivation of gradient-based steering for diffusion and
flow-matching policies in Appendix.

For diffusion models, the modified the noise prediction is:

ϵ̂ = ϵ(akt:t+T , (o, l)OOD, k)− λ ·
√
1− ᾱk · g(akt:t+T , (o, l)OOD),

(4)
where λ is the guidance scale hypermeter to control the
guidance strength. Similar to diffusion model, a flow matching
policy can be steered to accommodate the condition y =
(o, l)OOD by controlling the predicted velocity field:

v̂ = v(akt:t+T , (o, l)OOD, k) + λ · g(akt:t+T , (o, l)OOD). (5)

The main challenge lies in modeling the gradient guidance
function g(·). In real-world OOD deployment, the conditioning



input (o, l)OOD is not a simple class label, but a structured
specification that implicitly encodes spatial and semantic con-
straints. A valid guidance function must therefore flexibly and
accurately model log p

(
(o, l)OOD | akt:t+T

)
, while satisfying

two requirements: (1) it must correctly interpret the geometry
and logical structure induced by the OOD condition, and (2)
it must provide dense, informative gradients with respect to
the proposed action trajectory.

IV. OUR APPROACH: VLS

The core of Vision–Language Steering (VLS) is to approxi-
mate the guidance signal g ≜ ∇ak

t:t+T
log p

(
(o, l)OOD | akt:t+T

)
for inference-time adaptation under OOD inputs. Since the
likelihood term is not directly available in real-world deploy-
ment, VLS constructs a differentiable surrogate score R that
maps an action proposal to how well it satisfies the spatial and
semantic constraints implied by the OOD input pair (o, l)OOD:

R(akt:t+T , (o, l)OOD) ≈ log p
(
(o, l)OOD | akt:t+T

)
. (6)

By design, R is differentiable with respect to akt:t+T , enabling
gradient guidance g ≈ ∇ak

t:t+T
R(akt:t+T , (o, l)OOD) to steer

the denoising trajectory of the frozen base policy π⋆ without
fine-tuning. As illustrated in Figure 2, VLS instantiates this
pipeline with three components:

1) OOD input grounding and VLM-generated differ-
entiable scoring. Ground the OOD input pair (o, l)OOD

into a compact geometric scaffold P of task-relevant
3D keypoints, and use a vision–language model to
synthesize stage-wise, programmatic reward functions
R(·,P) that provide differentiable scores over action
proposals (Sec. IV-A).

2) Inference-time denoising guidance. Inject ∇aRs into
the diffusion or flow-matching denoising updates, com-
bining gradient-based refinement with particle-level di-
versity and resampling to steer the action distribution
under OOD inputs (Sec. IV-B).

3) Closed-loop execution control and stage switching.
Use execution feedback to adaptively regulate the guid-
ance strength across action chunks and to determine
transitions between stage-specific reward functions, en-
abling stable multi-stage execution under physical un-
certainty (Sec. IV-C).

Full implementation details corresponding to each compo-
nent of VLS, including the VLM prompt design and reward
function structure, are provided in Appendix.

A. OOD Input Grounding and Reward Generation

To construct the surrogate score R(akt:t+T , (o, l)OOD), VLS
must map the high-dimensional OOD input pair (o, l)OOD to a
differentiable function over the action space. We achieve this
by (i) grounding the OOD input into a compact set of task-
relevant spatial variables, and (ii) synthesizing programmatic,
differentiable reward functions over these variables.

1) OOD Input Grounding: Given an OOD input pair
(o, l)OOD, VLS first identifies the objects and regions rele-
vant to the manipulation task using a vision–language model
(VLM). For each identified object, we apply the Segment
Anything Model (SAM [29]) to obtain a set of object masks
M. Following [23], we extract semantically aligned dense
visual features using DINOv2 [8], producing a patch-wise
feature map Φ ∈ RH×W×d, which is filtered using the
corresponding object masks.

To recover physical structure, masked pixels are reprojected
into a 3D point cloud using depth information. Each point
is represented by the concatenation of its DINO feature (d
dimensions) and its 3D spatial coordinates, yielding a (d +
3)-dimensional representation. We cluster these object-centric
point clouds to obtain a set of task-relevant keypoints P =
{pi}ni=1, where each pi ∈ R3 anchors a physically meaningful
spatial constraint in the environment.

Through this process, the OOD input pair (o, l)OOD is
deterministically compressed into a geometric scaffold P ,
which exposes the spatial variables required for downstream,
differentiable reward evaluation.

2) Programmatic Reward Generation: Given the grounded
keypoint set P , VLS leverages the cross-modal reasoning
capability of VLMs to synthesize stage-aware, programmatic
reward functions. Specifically, the VLM is queried to: (i)
decompose the task implied by (o, l)OOD into S sequential
stages, and (ii) for each stage s ∈ {1, . . . , S}, generate
a differentiable reward function that evaluates how well an
action proposal satisfies the corresponding spatial constraints.

Formally, for each stage s, the VLM produces a reward
function Rs(a

k
t:t+T , (o, l)OOD) = fVLM(akt:t+T ,P, s), where

Rs defines a stage-specific potential field over the action
space, returning a scalar value that is differentiable with
respect to the action proposal akt:t+T . Intuitively, Rs measures
the degree to which the proposed action trajectory respects the
spatial relationships encoded by P at stage s. To ensure dif-
ferentiability, we constrain the VLM to output programmatic
reward definitions implemented as PyTorch [39] functions
composed of differentiable tensor operations (e.g., distances,
dot products, soft constraints). During inference, gradients
are backpropagated through the instantiated reward function,
while the VLM itself remains a non-differentiable, off-graph
component.

This construction directly instantiates the gradient guidance
signal required for inference-time steering:

gs ≜ ∇ak
t:t+T

Rs(a
k
t:t+T , (o, l)OOD), (7)

providing a dense, action-space gradient that approximates
∇ak

t:t+T
log p((o, l)OOD | akt:t+T ).

B. Action Denoising Process Guidance

Given the stage-wise reward functions {Rs} constructed in
Sec. IV-A, we next describe how VLS injects their gradients
into the denoising process of the frozen base policy π⋆.
Our goal is to steer inference-time sampling toward action
trajectories that satisfy the constraints implied by the OOD



Fig. 2. VLS pipeline overview. At environment time step t, given RGB-D observation ot and language instruction l, VLS firstly utilize the Segment Anything
Model (SAM [29]) and DINOv2 [8] feature to ground condition into a set of spatial keypoints P . Subsequently, a Vision-Language Model will be queried to
generates a series of stage-aware differentiable programmatic reward functions {Rs}Ss=1, based on observation, task instruction and keypoints, which are used
to guide the action generation process of the frozen base policy π⋆: during the denoising sampling loop, the system precisely corrects action trajectories by
injecting reward gradients, incorporating RBF [24] repulsion terms and a Feynman–Kac [44] based resampling mechanism to rapidly converge to high-reward
regions while maintaining sampling diversity. Finally, VLS constructs a closed-loop stage switching system based on reward feedback, utilizing adaptive
guidance strength and Schmitt-trigger [43] switching logic to monitor execution progress, thereby automatically triggering phase transitions or retry strategies
when facing physical uncertainties (such as object displacement or manipulation failures), ensuring robust completion of long-horizon manipulation tasks in
OOD environments.

input pair (o, l)OOD, while preserving diversity and robustness
under complex, multi-modal landscapes. To this end, we com-
bine gradient-based refinement with particle-level diversity and
gradient-free resampling.

1) Diverse Proposal Initialization with Repulsive Forces:
At each environment timestep t, denoising begins by sampling
a batch of B action proposals {aKt:t+T [i] ∼ N (0, I)}Bi=1 inde-
pendently. To prevent the batch from collapsing prematurely
to a narrow mode of the base policy, we introduce a diversity-
promoting repulsive force during the early denoising steps.
Inspired by [24, 10], we define a repulsive gradient based on
pairwise distances:

gkRBF[i] = ∇ak
t:t+T [i]

∑
j ̸=i

1

∥akt:t+T [i]− akt:t+T [j]∥2 + ϵ
. (8)

This term encourages action proposals within the batch to
remain separated, ensuring broad coverage of the action man-
ifold and providing diverse candidates for subsequent reward-
based guidance.

2) Gradient-Based Refinement: To bias the denoising tra-
jectory toward actions that satisfy the OOD-induced con-
straints, we inject the stage-specific reward gradient gs =
∇ak

t:t+T
Rs(a

k
t:t+T , (o, l)OOD) into the denoising updates.

Specifically, following Eq. (4) for diffusion policies and
Eq. (5) for flow-matching policies, the reward gradient is

added to the noise or velocity prediction at each denoising
step k, steering samples toward regions of higher reward. To
improve stability under noisy gradients, we adopt stochastic
refinement with multiple inner updates per denoising step,
analogous to MCMC-based guidance [16, 49, 17]. This pro-
cedure enables smoother exploration of the reward landscape
and mitigates sensitivity to local gradient artifacts.

3) Gradient-Free Resampling via Feynman–Kac Steering:
In addition to gradient-based refinement, VLS employs a
gradient-free resampling mechanism based on Feynman–Kac
(FK) steering [12, 14, 44]. We interpret the batch of action
proposals as an interacting particle system and periodically
resample particles according to reward-based potentials. For
the i-th particle at denoising step k, the potential is defined as

Gk
i = exp

(
Rs(a

k
t:t+T [i], (o, l)OOD)

)
. (9)

Normalized weights wk
i = Gk

i /
∑B

j=1 G
k
j are computed, and

multinomial resampling is applied to the particle set. This pro-
cedure effectively tilts the transition kernel of the generative
process toward the target distribution p(a | (o, l)OOD), allowing
high-reward particles to replicate while pruning proposals that
violate the OOD-induced constraints.

By combining continuous gradient-based steering with dis-
crete, reward-weighted resampling, VLS enables the frozen
base policy π⋆ to navigate complex, multi-modal constraint



landscapes efficiently, avoiding the sample inefficiency and
brittleness of purely selection-based methods.

C. Closed-Loop Execution Control and Stage Switching

To handle physical uncertainty (e.g., object slippage, partial
execution) and to robustly coordinate multi-stage tasks, VLS
incorporates a closed-loop execution control mechanism. This
mechanism uses execution feedback to (i) adaptively regulate
the guidance strength λ at the level of action chunks, and
(ii) determine when to switch between stage-specific reward
functions {Rs} during task execution.

1) Adaptive Guidance Strength: Within a fixed task stage
s, multiple action chunks {at:t+T } may be generated sequen-
tially. We adapt the guidance strength λt for each action chunk
t based on the relative reward achieved under the current stage-
specific reward function Rs.

Let Rt
s denote the reward value of the final denoising step

for the action chunk generated at chunk index t under stage s,
and let Rbase

s denote the corresponding reward obtained from
the first action chunk generated for this stage. The guidance
strength is computed as:

λt = λmax · sigmoid

(
1− Rt

s

Rbase
s

)
. (10)

This adaptive schedule increases guidance when the current
action chunk deviates from the constraints encoded by Rs,
and progressively reduces guidance as execution improves. As
a result, strong steering is applied when coarse correction is
required, while the frozen base policy π⋆ is allowed to domi-
nate during fine-grained manipulation near stage completion.

2) Schmitt-Trigger-Based Stage Switching: To robustly de-
termine when to transition between stages and to avoid
oscillatory behavior near stage boundaries, we employ a
hysteresis-based switching mechanism inspired by the Schmitt
trigger [43]. For the current stage s, we define two reward
thresholds Rhigh and Rlow, and compute a switching signal Qt

based on the evolution of Rt
s:

Qt =


Advance stage, Rt

s > Rhigh,

Maintain stage, Rlow ≤ Rt
s ≤ Rhigh,

Reinforce stage, Rt
s < Rlow.

(11)

When a switching event is triggered, a vision–language
model is queried to interpret the execution outcome and
select the appropriate next-stage reward function Rs+1, or
to continue applying the current stage reward Rs with up-
dated guidance strength. By introducing hysteresis into stage
switching, VLS avoids premature transitions and repeated
oscillations, enabling stable coordination across stages under
physical uncertainty and complex OOD execution dynamics.
The whole algorithm of VLS can be found at Algorithm 1.

V. EXPERIMENTS

We evaluate (VLS) in both simulation and real-world set-
tings. Simulation experiments are conducted on two widely

Algorithm 1: VLS Algorithm
Input: Base policy π⋆; Initial observation o0; language

instruction l; chunk horizon T ; sample batch size B
Output: Action chunk at:t+T

1 // Condition grounding and reward
generation;

2 P = {pi}ni=1 ← LVM(o0, l)
3 {Rs(at:t+T ,P)}Ss=1 ← fVLM(o0, l,P)
4 // Initialize parameters;
5 s← 1;
6 MCMC ← 4 if π⋆ is diffusion else 1;
7 // Denoising loop at action chunk index t;
8 Sample initial proposals: {aK

t:t+T [i] ∼ N (0, I)}Bi=1;
9 for k = K → 0 do

10 // Diversity initialization;
11 gkRBF[i] = ∇ak

t:t+T
[i]

∑
j ̸=i

1

∥ak
t:t+T

[i]−ak
t:t+T

[j]∥2+ϵ

12 Use gkRBF as g in Eq. (4) or Eq. (5)
13 // Gradient-based refinement;
14 gkreward = ∇ak

t:t+T
Rs(a

k
t:t+T ,P);

15 for m = 1→MCMC do
16 Use gkreward as g in Eq. (4) or Eq. (5)

17 // Gradient-free resampling;
18 for i = 1→ B do
19 Gk

i ← exp(Rs(a
k
t:t+T [i],P));

20 wk
i ← Gk

i /
∑B

j=1 G
k
j ;

21 Resample {ak
t:t+T [i]}Bi=1 according to {wk

i }
22 // Closed-loop execution control;
23 Adapt λt via Eq. (10)
24 Update stage s via Eq. (11)
25 return at:t+T [0]

used manipulation benchmarks, CALVIN [35] and LIBERO-
PRO [54], while real-world deployment is performed on a
Franka Emika robot. We systematically test generalization
under both spatial and semantic shifts. To explicitly model
inference-time out-of-distribution (OOD) conditions, we in-
troduce controlled perturbations at test time along two axes:

Observation perturbations. We modify the environment
state by (i) adding previously unseen objects as distractors,
(ii) changing objects’ attribute during testing, and (iii) chang-
ing the positions or orientations of task-relevant objects and
support surfaces.

Language perturbations. We alter task instructions by
changing target objects and goal behaviors. More details on the
perturbation and task description are provided in Appendix.

Our evaluation answers the following questions:

• Q1. Is inference-time steering necessary to handle
observation and language shifts at test time?

• Q2. Does VLS provide stronger adaptation than
existing inference-time steering approaches?

• Q3. What is the contribution of each component in
the VLS framework?

• Q4. Can VLS adapt policies in the real world with
minimal computational overhead?



Method Task Perturbation Position Perturbation Overall

Goal Spatial 10 Object Avg. Goal Spatial 10 Object Avg. Avg.

OpenVLA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
π-0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
π-05 0.00 1.00 1.00 1.00 0.75 38.00 20.00 8.00 17.00 20.75 10.75
π-0.5 (LeRobot) 12.00 48.50 21.50 10.50 23.13 29.00 41.00 11.00 16.00 24.25 23.69
π-0.5 (LeRobot) + VLS 33.50 54.00 25.50 41.00 38.50 38.00 42.00 15.50 45.00 35.13 36.81

Table I. LIBERO-PRO results. We test VLA baselines and a frozen π0.5 policy with/without VLS. The experimental environment consists of LIBERO-
PRO [54]’s task and position perturbation, applied to LIBERO [34]’s four suites: Goal, Spatial, 10 (Long) and Object, with each suite containing 10 tasks.
For each task in each suite, we test 20 episodes and report the average success rates (%). “Overall” reports the mean across all columns.

Fig. 3. Steering methods comparison on CALVIN. Success rates for VLS (ours), DynaGuide, ITPS, and the base diffusion policy across movable objects
(cubes) and articulated parts (drawer, switch, button, door). VLS achieves 94% average on movable objects (7.4× over base policy) and 87% on articulated
parts (9.6× boost), outperforming prior steering methods by 15–25 percentage points. Error bars show standard deviation over 600 episodes per task.

A. Baselines

We compare VLS against seven baselines, grouped into
VLA models and inference-time steering methods. (Detailed
Implementation in Appendix.)

VLA models: To answer Q1, we evaluate four leading VLA
models that rank highly on the LIBERO-PRO leaderboard:
OpenVLA [28], π0 [3], π0.5 [4], and π0.5 LeRobot finetuned
version [31]. All models use a VLM backbone to jointly reason
over observations and language instructions and are evaluated
without any fine-tuning on our OOD test scenarios.

DP Steering policies: To answer Q2, we compare against
two popular inference-time steering approaches on the same
frozen base policy: i) DynaGuide [16], which steers denoising
using distances in pretrained DINO feature space as heuristic
guidance; and ii) ITPS [49], which selects from a predefined
set of guidance functions based on the detected OOD condi-
tion.

Ablation: To answer Q3, we evaluate three ablated variants
of VLS that remove one component at a time: i) w/o gradient
guidance, ii) w/o Feynman–Kac (FK) resampling, and iii) w/o
RBF-based diversity initialization.

B. Results

Inference-Time Steering Is Necessary. We choose
LIBERO-PRO [54], a simulation benchmark, as our test-
ing platform. This is an OOD test suite developed based
on LIBERO [34], which primarily includes comprehensive
perturbations across five aspects of the original LIBERO’s

four task suites: object, position, semantic, task, and envi-
ronment. Among these, the position and task perturbations
best align with the description of OOD scenarios in this
paper. The position perturbation refers to relocating objects
(oOOD) while keeping language instructions unchanged. The
task perturbation refers to redefining task logic and target
states, where visual observations remain in-distribution while
language instructions are completely changed (lOOD). For each
perturbation for tasks in each suites, we text 20 episodes. We
choose Success Rate (SR) as metric. We evaluate four leading
VLA models that rank highly on the LIBERO-PRO leader-
board: OpenVLA [28], π0 [3], π0.5 [4], and π0.5 LeRobot
finetuned version [31].

As shown in Table I, these pre-trained VLAs, despite
leveraging pretrained VLM backbones for perception and in-
struction understanding, struggle to adapt to joint observation
and language shifts at test time. VLS consistently outper-
forms all evaluated VLA models under joint observation and
language perturbations (Table I). While VLAs exhibit strong
in-distribution performance, their success rates drop sharply
under OOD conditions. This failure persists despite the use of
pretrained VLM backbones. We attribute this to the fact that
post-training on robot data entangles spatial reasoning with
specific training contexts, effectively degrading the VLM’s
generalization ability when the execution environment deviates
from the training manifold. These results shows inference-time
steering is necessary for pretrained policy adaptation.

VLS Outperforms Existing Steering Methods. We com-
pared with two leading steering methods, DynaGuide [16] and



0

20

40

60

80

100

Su
cc

es
s 

R
at

e 
(%

)

17.3

85.3 86.0 88

Ablation
Success Rate (%)

0

50

100

150

200

Av
g.

 E
pi

so
de

Le
ng

th

178.6

64.7 69.3 61

Ablation
Episode Length (# steps)

0

500

1000

Av
g.

 I
nf

er
en

ce
Ti

m
e 

(m
s) 979

1170
1246 1189

Ablation
Inference Time (ms)

1 2 5 10
Number of Samples

0

20

40

60

80

100

Su
cc

es
s 

R
at

e 
(%

) 88 88 90 90

Runtime Scaling
Success Rate (%)

1 2 5 10
Number of Samples

50

60

70

80

Av
g.

 E
pi

so
de

Le
ng

th

73.0

58.0 57.8
55.9

Runtime Scaling
Episode Length (# steps)

1 2 5 10
Number of Samples

0

500

1000

Av
g.

 I
nf

er
en

ce
Ti

m
e 

(m
s)

665
799

953

1239

Runtime Scaling
Inference Time (ms)

w/o Grad w/o FKD w/o RBF VLS

Fig. 4. (left) Ablation of VLS components (50 episodes per task). We compare Full VLS (gradient guidance + FK steering + RBF diversity, with K = 10)
against variants that remove FK steering (w/o FKD), remove RBF diversity (w/o RBF), or remove gradient guidance (w/o grad). (right) Scaling with sample
batch size K on door_left (50 episodes). Larger K improves performance but increases inference time, illustrating a compute–performance tradeoff.

Fig. 5. Real-world Deployment on a Franka robot. (Left: In-distribution tasks) Task layouts, language instructions, and success rates for in-distribution
real-world manipulation. Level 1 (top) requires placing an orange onto a specified plate (red or green) based on the instruction. Level 2 (bottom) introduces an
additional object (banana), requiring sequential selection of both the target object and the target plate. Bar plots report per-task and average success rates for
the frozen π-0.5 baseline and VLS. (Right: Out-of-distribution tasks) Task layouts, instructions, and results under test-time distribution shifts. We evaluate
three OOD variants: (1) Appearance shift (top), replacing the red/green plate with a previously unseen yellow plate; (2) Position shift (middle), swapping
the locations of the two plates while keeping the instruction unchanged; (3) Object shift (bottom), replacing the banana with a never-before-seen mug and
instructing the robot to place the mug on the green plate. Each task is evaluated over 20 trials. Grasping the correct object contributes 50% success, and full
task completion contributes 100%. VLS consistently outperforms the baseline and maintains robust execution under real-world OOD conditions.

ITPS [49] on CALVIN [35]. As shown in left part of Figure
3, where a Franka Panda robot interacts with a tabletop scene
containing articulated objects (door, drawer, button, switch)
and three randomly placed colored cubes (red, blue, pink).

As illustrated in Figure 3, all steering methods improve
over the unsteered base diffusion policy, confirming the ne-
cessity of inference-time steering. On MovableObjects (cube
manipulation), VLS achieves a 94% average success rate,
corresponding to a 7.4× improvement over the base policy. On
ArticulatedParts (drawer, switch, button, door), VLS reaches
87% average success, a 9.6× gain. ITPS performs reason-
ably on articulated tasks with fixed target states, but fails
on movable-object tasks where object positions vary across
episodes. DynaGuide improves performance across both task
groups, but its DINO-feature-based heuristic lacks the ex-
pressiveness to capture task-specific spatial requirements. In
contrast, VLS conditions its guidance directly on the current
observation–language input, enabling precise steering under
spatial variability and task-dependent constraints that heuristic
guidance cannot reliably handle.

Ablation Study of components. We evaluate three ablated
variants of VLS that remove one component at a time: i) w/o
gradient guidance, ii) w/o Feynman–Kac (FK) resampling, and
iii) w/o RBF-based diversity initialization.

Effect of gradient-based guidance. Removing gradient guid-
ance causes a severe performance collapse across all tasks,
with success rates dropping to near-failure and episode lengths
increasing substantially (Figure 4 (left)). This confirms that
dense, trajectory-differentiable guidance is the primary driver
of VLS’s effectiveness.

Role of FK resampling and RBF diversity. Removing FK
resampling or RBF-based diversity has a smaller impact on
success rate but consistently degrades efficiency and stability.
These components improve sample efficiency by preventing
premature collapse to suboptimal modes and by maintaining
global coverage early in denoising.

Scaling with sample batch size. As shown in Figure 4 (right),
increasing the batch size improves success rates and reduces
episode length, at the cost of higher inference latency. This
exposes a practical compute–performance trade-off that can
be tuned for deployment.

Together, these results show that both gradient-free explo-
ration and gradient-based refinement are necessary for robust
inference-time control. Robust inference-time adaptation re-
quires both gradient-free global exploration (to avoid poor
initial modes) and gradient-based local refinement (to satisfy
fine-grained constraints during execution).

VLS Enables Efficient Real-World Deployment. We eval-



uate VLS on a Franka Emika robot to test whether inference-
time steering can reliably adapt a frozen VLA policy under
real-world test-time variation. (Detailed Implementation in
Appendix.)

As shown in Figure 5, VLS consistently improves real-world
task success over the frozen π-0.5 baseline across both in-
distribution and out-of-distribution settings. In in-distribution
tasks requiring object selection and placement, VLS achieves
a 69% average success rate, outperforming the baseline by
19%. Under out-of-distribution conditions involving appear-
ance changes, object repositioning, and novel object substitu-
tions, the baseline performance degrades sharply, while VLS
maintains stable execution and substantially higher success
rates. In the most challenging object-level OOD case, where
the target object is replaced by a previously unseen mug, the
baseline fails entirely, whereas VLS succeeds in 40% of trials.
These results show that VLS can be deployed efficiently in
real robotic systems and enables pretrained policies to adapt
to test-time spatial and semantic variation through inference-
time steering alone.

VI. CONCLUSION & LIMITATION

We propose VLS, a training-free framework that guides pre-
trained robotic policies using differentiable rewards generated
by Vision–Language Models, addressing the challenge of pol-
icy deployment in OOD scenarios. Experiments demonstrate
that VLS significantly outperforms existing methods in both
simulation and real-world tasks. Limitations of VLS include
computational latency: batch sampling, MCMC runs, and FK
resampling introduce high inference overhead. Future work
may explore progress-aware reward signal generation and
optimizing computational efficiency during inference.

REFERENCES

[1] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen
Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Haus-
man, et al. Do as i can, not as i say: Grounding language
in robotic affordances. arXiv preprint arXiv:2204.01691,
2022.

[2] Jose Barreiros, Andrew Beaulieu, Aditya Bhat, Rick
Cory, Eric Cousineau, Hongkai Dai, Ching-Hsin Fang,
Kunimatsu Hashimoto, Muhammad Zubair Irshad,
Masha Itkina, et al. A careful examination of large
behavior models for multitask dexterous manipulation.
arXiv preprint arXiv:2507.05331, 2025.

[3] Kevin Black, Noah Brown, Danny Driess, Adnan Es-
mail, Michael Equi, Chelsea Finn, Niccolo Fusai,
Lachy Groom, Karol Hausman, Brian Ichter, Szymon
Jakubczak, Tim Jones, Liyiming Ke, Sergey Levine,
Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl
Pertsch, Lucy Xiaoyang Shi, James Tanner, Quan Vuong,
Anna Walling, Haohuan Wang, and Ury Zhilinsky. π0:
A vision-language-action flow model for general robot
control. arXiv preprint arXiv:2410.24164, 2024.

[4] Kevin Black, Noah Brown, James Darpinian, Karan
Dhabalia, Danny Driess, Adnan Esmail, Michael Robert

Equi, Chelsea Finn, Niccolo Fusai, Manuel Y. Galliker,
Dibya Ghosh, Lachy Groom, Karol Hausman, brian
ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke,
Devin LeBlanc, Sergey Levine, Adrian Li-Bell, Mohith
Mothukuri, Suraj Nair, Karl Pertsch, Allen Z. Ren,
Lucy Xiaoyang Shi, Laura Smith, Jost Tobias Sprin-
genberg, Kyle Stachowicz, James Tanner, Quan Vuong,
Homer Walke, Anna Walling, Haohuan Wang, Lili Yu,
and Ury Zhilinsky. π0.5: a vision-language-action model
with open-world generalization. In Joseph Lim, Shuran
Song, and Hae-Won Park, editors, Proceedings of The
9th Conference on Robot Learning, volume 305 of Pro-
ceedings of Machine Learning Research, pages 17–40.
PMLR, 27–30 Sep 2025.

[5] Anthony Brohan, Noah Brown, Justice Carbajal, Yev-
gen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alexander Herzog, Jas-
mine Hsu, Julian Ibarz, Alex Irpan, Tomas Jackson, Sally
Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry Kalash-
nikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee,
Sergey Levine, Yao Lu, Utsav Malla, Deeksha Man-
junath, Igor Mordatch, Ofir Nachum, Carolina Parada,
Jodilyn Peralta, Karl Pertsch, Jornell Quiambao, Kan-
ishka Rao, Michael Ryoo, Grecia Salazar, Pannag San-
keti, Kevin Sayed, Jaspiar Singh, Sumedh Sontakke,
Austin Stone, Clayton Tan, Huong Tran, Vincent Van-
houcke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao,
Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich.
Rt-1: Robotics transformer for real-world control at scale.
In arXiv preprint arXiv:2212.06817, 2022.

[6] Anthony Brohan, Noah Brown, Justice Carbajal, Yev-
gen Chebotar, Xi Chen, Krzysztof Choromanski, Tianli
Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete
Florence, Chuyuan Fu, Montserrat Gonzalez Arenas,
Keerthana Gopalakrishnan, Kehang Han, Karol Haus-
man, Alexander Herzog, Jasmine Hsu, Brian Ichter, Alex
Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward
Lee, Sergey Levine, Yao Lu, Henryk Michalewski, Igor
Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann,
Michael Ryoo, Grecia Salazar, Pannag Sanketi, Pierre
Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut,
Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan
Wahid, Stefan Welker, Paul Wohlhart, Jialin Wu, Fei
Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and
Brianna Zitkovich. Rt-2: Vision-language-action models
transfer web knowledge to robotic control. arXiv preprint
arXiv:2307.15818, 2023.

[7] Jiahang Cao, Yize Huang, Hanzhong Guo, Rui Zhang,
Mu Nan, Weijian Mai, Jiaxu Wang, Hao Cheng, Jingkai
Sun, Gang Han, Wen Zhao, Qiang Zhang, Yijie Guo,
Qihao Zheng, Chunfeng Song, Xiao Li, Ping Luo, and
Andrew F. Luo. Compose your policies! improving
diffusion-based or flow-based robot policies via test-
time distribution-level composition. arXiv preprint
arXiv:2510.01068, 2025.



[8] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé
Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision
transformers. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), pages
9650–9660, October 2021.

[9] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau,
Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran
Song. Diffusion policy: Visuomotor policy learning via
action diffusion. arXiv preprint arXiv:2303.04137, 2023.

[10] Gabriele Corso, Yilun Xu, Valentin De Bortoli, Regina
Barzilay, and T. Jaakkola. Particle guidance: non-
i.i.d. diverse sampling with diffusion models. ArXiv,
abs/2310.13102, 2023. URL https://api.semanticscholar.
org/CorpusID:264405842.

[11] Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. Plug and play language models: A simple
approach to controlled text generation. arXiv preprint
arXiv:1912.02164, 2019.

[12] Pierre Del Moral. Feynman-Kac Formulae: Genealogi-
cal and Interacting Particle Systems with Applications.
Springer, 2004.

[13] Prafulla Dhariwal and Alex Nichol. Diffusion mod-
els beat gans on image synthesis. arXiv preprint
arXiv:2105.05233, 2021.

[14] Arnaud Doucet, Nando de Freitas, and Neil Gordon.
Sequential Monte Carlo Methods in Practice. Springer,
2001.

[15] Danny Driess, Fei Xia, Alexander Sax, Brian Ichter,
Keerthana Gopalakrishnan, Jeannette Bohg, Andy Zeng,
Chelsea Finn, Sergey Levine, Karol Hausman, et al.
PaLM-E: An embodied multimodal language model.
arXiv preprint arXiv:2303.03378, 2023.

[16] Maximilian Du and Shuran Song. Dynaguide: Steering
diffusion polices with active dynamic guidance. arXiv
preprint arXiv:2506.13922, 2025.

[17] Yilun Du, Conor Durkan, Robin Strudel, Joshua B.
Tenenbaum, Sander Dieleman, Rob Fergus,
Jascha Narain Sohl-Dickstein, A. Doucet, and Will
Grathwohl. Reduce, reuse, recycle: Compositional
generation with energy-based diffusion models
and mcmc. ArXiv, abs/2302.11552, 2023. URL
https://api.semanticscholar.org/CorpusID:257078922.

[18] Jiafei Duan, Samson Yu Bai Jian, and Cheston Tan.
Space: A simulator for physical interactions and causal
learning in 3d environments, 2021. URL https://arxiv.
org/abs/2108.06180.

[19] Jiafei Duan, Arijit Dasgupta, Jason Fischer, and Cheston
Tan. A survey on machine learning approaches for mod-
elling intuitive physics. arXiv preprint arXiv:2202.06481,
2022.

[20] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022.

[21] Jonathan Ho, Ajay Jain, and Pieter Abbeel. DDPM:
Denoising diffusion probabilistic models. In Advances

in Neural Information Processing Systems, volume 33,
pages 6840–6851, 2020.

[22] Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu
Li, Jiajun Wu, and Li Fei-Fei. Voxposer: Composable
3d value maps for robotic manipulation with language
models. arXiv preprint arXiv:2307.05973, 2023.

[23] Wenlong Huang, Chen Wang, Yunzhu Li, Ruohan Zhang,
and Li Fei-Fei. Rekep: Spatio-temporal reasoning of
relational keypoint constraints for robotic manipulation.
arXiv preprint arXiv:2409.01652, 2024.

[24] Hyeonseong Jeon, Cheolhong Min, and Jaesik Park.
Tree-guided diffusion planner. 2025. URL https://api.
semanticscholar.org/CorpusID:280985003.

[25] Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi
Wang, Yongqiang Dou, Yanjun Chen, Li Fei-Fei, Anima
Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General
robot manipulation with multimodal prompts. arXiv
preprint arXiv:2210.03094, 2022.

[26] Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ash-
win Balakrishna, Sudeep Dasari, Siddharth Karam-
cheti, Soroush Nasiriany, Mohan Kumar Srirama,
Lawrence Yunliang Chen, Kirsty Ellis, et al. Droid: A
large-scale in-the-wild robot manipulation dataset. arXiv
preprint arXiv:2403.12945, 2024.

[27] Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye.
Diffusionclip: Text-guided diffusion models for robust
image manipulation. arXiv preprint arXiv:2110.02711,
2022.

[28] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted
Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov,
Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong,
Thomas Kollar, Benjamin Burchfiel, Russ Tedrake, Dorsa
Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn.
Openvla: An open-source vision-language-action model.
arXiv preprint arXiv:2406.09246, 2024.

[29] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo,
Piotr Dollar, and Ross Girshick. Segment anything. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 4015–4026, October
2023.

[30] Nishanth Kumar, William Shen, Fabio Ramos, Dieter
Fox, Tomás Lozano-Pérez, Leslie Pack Kaelbling, and
Caelan Reed Garrett. Open-world task and motion
planning via vision-language model inferred constraints.
arXiv preprint arXiv:2411.08253, 2024.

[31] LeRobot Team. π0.5 (pi05 libero) (lerobot).
https://huggingface.co/lerobot/pi05 libero finetuned,
2025. Model checkpoint + documentation (accessed
2026-01-31).

[32] Zhuo Li, Junjia Liu, Zhipeng Dong, Tao Teng, Quentin
Rouxel, Darwin Caldwell, and Fei Chen. Towards de-
ploying vla without fine-tuning: Plug-and-play inference-
time vla policy steering via embodied evolutionary dif-
fusion. arXiv preprint arXiv:2511.14178, 2025.

https://api.semanticscholar.org/CorpusID:264405842
https://api.semanticscholar.org/CorpusID:264405842
https://api.semanticscholar.org/CorpusID:257078922
https://arxiv.org/abs/2108.06180
https://arxiv.org/abs/2108.06180
https://api.semanticscholar.org/CorpusID:280985003
https://api.semanticscholar.org/CorpusID:280985003
https://huggingface.co/lerobot/pi05_libero_finetuned


[33] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maxi-
milian Nickel, and Matt Le. Flow matching for generative
modeling. In arXiv preprint arXiv:2210.02747, 2022.

[34] Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang
Liu, Yuke Zhu, and Peter Stone. Libero: Benchmarking
knowledge transfer for lifelong robot learning. arXiv
preprint arXiv:2306.03310, 2023.

[35] Oier Mees, Lukás Hermann, Erick Rosete-Beas, and
Wolfram Burgard. Calvin: A benchmark for language-
conditioned policy learning for long-horizon robot ma-
nipulation tasks. IEEE Robotics and Automation Letters,
7:7327–7334, 2021. URL https://api.semanticscholar.org/
CorpusID:244908821.

[36] Chenlin Meng, Yutong He, Yang Song, Jiaming Song,
Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. Sdedit:
Guided image synthesis and editing with stochastic dif-
ferential equations. arXiv preprint arXiv:2108.01073,
2021.

[37] Mitsuhiko Nakamoto, Oier Mees, Aviral Kumar, and
Sergey Levine. Steering your generalists: Improving
robotic foundation models via value guidance. arXiv
preprint arXiv:2410.13816, 2024.

[38] Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Ab-
hishek Gupta, Abhishek Padalkar, Abraham Lee, Acorn
Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain,
et al. Open x-embodiment: Robotic learning datasets
and rt-x models: Open x-embodiment collaboration 0.
In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pages 6892–6903. IEEE, 2024.

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning
library. Advances in neural information processing
systems, 32, 2019.

[40] Wilbert Pumacay, Ishika Singh, Jiafei Duan, Ranjay Kr-
ishna, Jesse Thomason, and Dieter Fox. The colosseum:
A benchmark for evaluating generalization for robotic
manipulation. arXiv preprint arXiv:2402.08191, 2024.

[41] Scott Reed, Konrad Zolna, Emilio Parisotto, Ser-
gio Gómez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Manon Gimenez, Yevgenii Sulsky, Jack
Kay, Jost Tobias Springenberg, et al. A generalist agent.
arXiv preprint arXiv:2205.06175, 2022.

[42] Stéphane Ross, Geoffrey J. Gordon, and J. Andrew
Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. Proceedings
of the Fourteenth International Conference on Artificial
Intelligence and Statistics, 2011.

[43] O. H. Schmitt. A thermionic trigger. Journal of Scientific
Instruments, 15(1):24–26, 1938.

[44] Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye
Ren, Zhou Yu, Kathleen McKeown, and Rajesh Ran-

ganath. A general framework for inference-time scal-
ing and steering of diffusion models. arXiv preprint
arXiv:2501.06848, 2025.

[45] Zhanyi Sun and Shuran Song. Latent policy bar-
rier: Learning robust visuomotor policies by staying in-
distribution. arXiv preprint arXiv:2508.05941, 2025.

[46] Narek Tumanyan, Michael Geyer, Shai Bagon, and
Tali Dekel. Plug-and-play diffusion features for text-
driven image-to-image translation. arXiv preprint
arXiv:2211.12572, 2023.

[47] Andrew Wagenmaker, Mitsuhiko Nakamoto, Yunchu
Zhang, Seohong Park, Waleed Yagoub, Anusha Naga-
bandi, Abhishek Gupta, and Sergey Levine. Steering your
diffusion policy with latent space reinforcement learning.
arXiv preprint arXiv:2506.15799, 2025.

[48] Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan
Vuong, Chongyi Zheng, Philippe Hansen-Estruch, An-
dre Wang He, Vivek Myers, Moo Jin Kim, Max Du,
et al. Bridgedata v2: A dataset for robot learning at
scale. In Conference on Robot Learning, pages 1723–
1736. PMLR, 2023.

[49] Yanwei Wang, Lirui Wang, Yilun Du, Balakumar Sun-
daralingam, Xuning Yang, Yu-Wei Chao, Claudia Perez-
D’Arpino, Dieter Fox, and Julie Shah. Inference-
time policy steering through human interactions. arXiv
preprint arXiv:2411.16627, 2024.

[50] Yilin Wu, Anqi Li, Tucker Hermans, Fabio Ramos, An-
drea Bajcsy, and Claudia Pérez-D’Arpino. Do what you
say: Steering vision-language-action models via runtime
reasoning-action alignment verification. arXiv preprint
arXiv:2510.16281, 2025.

[51] Yilin Wu, Ran Tian, Gokul Swamy, and Andrea Ba-
jcsy. From foresight to forethought: VLM-in-the-loop
policy steering via latent alignment. arXiv preprint
arXiv:2502.01828, 2025.

[52] Hanming Ye. Steering diffusion policies with value-
guided denoising. In OpenReview (Forum Paper), 2025.
URL https://openreview.net/forum?id=dtMBW9W5jo.

[53] Xiu Yuan, Tongzhou Mu, Stone Tao, Yunhao Fang,
Mengke Zhang, and Hao Su. Policy decorator: Model-
agnostic online refinement for large policy model. arXiv
preprint arXiv:2412.13630, 2024.

[54] Xueyang Zhou, Yangming Xu, Guiyao Tie, Yongchao
Chen, Guowen Zhang, Duanfeng Chu, Pan Zhou, and
Lichao Sun. LIBERO-PRO: Towards robust and fair eval-
uation of vision-language-action models beyond memo-
rization. arXiv preprint arXiv:2510.03827, 2025.

[55] Zhengbang Zhu, Ziyan Li, Xiu Yuan, Hanbo Zhang,
Yuxiao Liu, Chongjie Zhang, Yong Yu, Weinan Zhang,
and Minghuan Liu. Unified latent steering and residual
refinement for online improvement of diffusion policy
models. In ICLR 2026 Conference Submission (Open-
Review), 2025. URL https://openreview.net/forum?id=
DbBD2aT1OG.

https://api.semanticscholar.org/CorpusID:244908821
https://api.semanticscholar.org/CorpusID:244908821
https://openreview.net/forum?id=dtMBW9W5jo
https://openreview.net/forum?id=DbBD2aT1OG
https://openreview.net/forum?id=DbBD2aT1OG

	Introduction
	Related Work
	Imitation-Trained Policies under Small Environment Shifts
	VLM-based Scene Understanding with Re-optimization
	Inference-time Steering of Generative Policies

	Problem Formulation
	The OOD Dilemma in Imitation Learning
	Diffusion and Flow Matching Policies
	Problem Formulation

	Our Approach: VLS
	OOD Input Grounding and Reward Generation
	OOD Input Grounding
	Programmatic Reward Generation

	Action Denoising Process Guidance
	Diverse Proposal Initialization with Repulsive Forces
	Gradient-Based Refinement
	Gradient-Free Resampling via Feynman–Kac Steering

	Closed-Loop Execution Control and Stage Switching
	Adaptive Guidance Strength
	Schmitt-Trigger-Based Stage Switching


	Experiments
	Baselines
	Results

	Conclusion & Limitation

